Application Of The Empirical Likelihood Method In Proportional Hazards Model

نویسندگان

  • Bin He
  • Marianna Pensky
  • Gary D. Richardson
  • James R. Schott
چکیده

In survival analysis, proportional hazards model is the most commonly used and the Cox model is the most popular. These models are developed to facilitate statistical analysis frequently encountered in medical research or reliability studies. In analyzing real data sets, checking the validity of the model assumptions is a key component. However, the presence of complicated types of censoring such as double censoring and partly intervalcensoring in survival data makes model assessment difficult, and the existing tests for goodness-of-fit do not have direct extension to these complicated types of censored data. In this work, we use empirical likelihood (Owen, 1988) approach to construct goodnessof-fit test and provide estimates for the Cox model with various types of censored data. Specifically, the problems under consideration are the two-sample Cox model and stratified Cox model with right censored data, doubly censored data and partly interval-censored data. Related computational issues are discussed, and some simulation results are presented. The procedures developed in the work are applied to several real data sets with some discussion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Likelihood in Survival Analysis

Since the pioneering work of Thomas and Grunkemeier (1975) and Owen (1988), the empirical likelihood has been developed as a powerful nonparametric inference approach and become popular in statistical literature. There are many applications of empirical likelihood in survival analysis. In this paper, we present an overview of some recent developments of the empirical likelihood for survival dat...

متن کامل

Empirical likelihood method for linear transformation models

Empirical likelihood inferential procedure is proposed for right censored survival data under linear transformation models, which include the commonly used proportional hazards model as a special case. A log-empirical likelihood ratio test statistic for the regression coefficients is developed. We show that the proposed logempirical likelihood ratio test statistic converges to a standard chi-sq...

متن کامل

Empirical Likelihood Approach and its Application on Survival Analysis

A number of nonparametric methods exist when studying the population and its parameters in the situation when the distribution is unknown. Some of them such as "resampling bootstrap method" are based on resampling from an initial sample. In this article empirical likelihood approach is introduced as a nonparametric method for more efficient use of auxiliary information to construct...

متن کامل

Inference for the Proportional Hazards Family under Progressive Type-II Censoring

In this paper, the well-known proportional hazards model which includes several well-known lifetime distributions such as exponential,Pareto, Lomax, Burr type XII, and so on is considered. With both Bayesian and non-Bayesian approaches , we consider the estimation of parameters of interest based on progressively Type-II right censored samples. The Bayes estimates are obtained based on symmetric...

متن کامل

Empirical Likelihood Confidence Band

OF DISSERTATION Empirical Likelihood Confidence Band The confidence band represents an important measure of uncertainty associated with a functional estimator and empirical likelihood method has been proved to be a viable approach to constructing confidence bands in many cases. Using the empirical likelihood ratio principle, this dissertation developed simultaneous confidence bands for many fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016